AI+Web3 會成為這一輪牛市的催化劑嗎?
都在盼望 AI+Web3 會成為這一輪牛市的催化劑,從 VC 給的高估值和重注就可見一斑。問題來了,AI+Web3 融合賽道目前存在哪些問題?我來談談我的看法:
1)AI 訓練需要大規模的數據,而 Web3 的用武之地恰恰是做數據追蹤以及由此衍生的激勵功效。長期看,AI 勢必需要 web3 的助力,但需要釐清 web3 只能解決 AI 的有限問題。
比如,傳統大規模的數據訓練、算法持續優化、計算機視覺、語音識別技術、遊戲 AI 等核心領域主要推動力還得靠大規模集中算力和芯片、算法等軟硬件適配優化等,諸如深度學習卷積神經網絡、強化學習、類腦計算模型等拓展 AI 能力邊界的方向,短期都沒有 web3 立足的可能性;
2)生成式 AI 只佔 AI 大板塊的一個小分支,但卻加速了 AI 和 web3 的融合。因為生成式 AI 是一種更偏向應用端的 AI 普惠技術。理想情況下,基礎大模型一般會由大公司利用集中算力搞定並採取開源政策,對其上層的應用市場進行驅動。整體 AI 市場會逐漸長尾化,模型微調和推理的重要性被凸顯。
然而,一旦掌握核心算力和模型資源的公司改變開源政策對整體 AI 市場都會產生直接影響,為避免此種危機產生,一種更依賴分佈式算力架構和分佈式推理協作架構的 infra 就會成為必須。
3)web3 可以在 AI 分佈式框架的構建過程中發揮關鍵作用,比如:在模型訓練時,區塊鏈可以為數據源創建唯一標識,做數據去重提高訓練效率;在算力不足時,區塊鏈可以利用 Tokenomics 激勵機制構建分佈式的 AI 算力網絡;在參數微調環節,區塊鏈可以記錄模型的不同版本,追蹤模型演變歷程同時做精細化控制;
在模型推理環節,可以應用 ZK、TEE 等技術構建去中心化的推理網絡,增進模型間的通信互信;在邊緣計算和 DePIN 集成環節,web3 可以幫助構建去中心化的邊緣 AI 網絡,帶動 AI+DePIN 物聯網的結合。
4)Vitalik 此前談及 AI+Web3 的結合點時聲明瞭 AI 可以作為 Web3 世界的參與者循序漸進融合,因此 AI 和 web3 的融合一定會非常緩慢。
一方面,主流 web2 世界的注意力尚在 AI 展現功效層面而對 AI 幕後協作框架並沒有太多倚重,存在和 web3 脱節的問題;另一方面,web3 在 AI 結合領域也還停留在分佈式算力網絡、分佈式推理架構網絡、分佈式 Tokenomics 應用網絡、分佈式 AI Agent 工具協作網絡等基礎 infra 的構建階段,並沒有得到 web2 主流剛需羣體的充分驗證和應用。
總之,一句話,AI+Web3 方向大勢所趨沒錯,但實際落地發展並沒那麼快,可能要持續一個週期甚至跨週期才能看到顯著進展,需要多一點耐心。
本文獲得《AI+Web3 會成為這一輪牛市的催化劑嗎?》授權轉載,作者:Haotian